

The AMBRI Biosensor

CDC/DARPA Seminar Day

Executive Summary

Goal

To extend the AMBRI Biosensor to Bacterial Detection for BWD Applications

Requirements

Sensitivity: Bacteria 100 per ml; toxins < 20ng/L

Stability: One month at 40°C

Multi-analyte: E.coli, L.innocua, Y.pestis,

B.anthracis,

Deliverables

Design rules for silicon chip biosensor

Process parameters for microelectrode array fabrication

Design specifications for a commercial bacteria sensor

Project Status

Complete

- Flow cell complete and tested
- Electrode array process developed
- 96 sensor electronic chip designed, fabricated & tested
- UV flow cell constructed for photo-patterning
- Differential flow cell trials
- Caged biotin molecules synthesised for photo-patterning
- Bacteria fragmentation .optimised for improved sensitivity
- Membrane stabilising molecules synthesised
- Bacterial sensing demonstrated in a flow cell
- Sensitivity (1000 bacteria/ml) TSH (< 0.02mlU/L)

Progress to Date

Pending

- Final testing of *E.coli*, *B.anthracis*, *F.tularensis*, *C.burnettii*, *Y.pestis*
- (subject to availability of high affinity antibodies)

Technology Transferred to Commercial Development

- Storage trials
- Interference trials

Electronics & Chips

0.6mm TLM CMOS6mm x 8mm96 sensors32 of each amp.8 SD converters

Three forms of amplifier (32 each) to test the best amplification format

Eight x Sigma delta convertors allow parallel analog to digital conversion

Fine Detail of Sensor Substrate

Flow cell array

Sensor pads

UV Caged Biotin Results

Comparison of analogues

Membrane spanning lipid

Irradiation times

Gramicidin channel

Sample Flow & Fragmentation

Ecoli titration 10² to 10⁷ cells/ml - work in progress

Project End

goals/milestones/expectations

- Design rules for integrated circuit biosensor chip
- Process control parameters for microelectrode array fabrication
- Draft specifications for a commercial bacterial sensor

 Relevant design principles integrated with medical diagnostic production

Envisioned Deliverable Physical & Operational Requirements

- Robustness to Environmental Conditions
 Ambulances
 Field operations (biologicals)
- Shelf Life1 year at ambient conditions
- No Media Requirements
- Mobility (Field or Lab)

Notebook sized instrument with external power Defense unit could be handheld with integral power Disposable is size of a business card

• Sample processing requirements
No external sample processing required

Envisioned Deliverable Detection/Performance Capabilities

- Detection Limit < 1000 cells/ml at this time
- Response Time Five minutes
- False alarm rates Analyte & Format dependent **Typical Targets**

```
sensitivity - 95% specificity - 95%
```


Dose Response *E.coli*

(Fragmented with flow cell)

Which Chemical Agents?

ANALYTES DETECTED TO DATE

Hormones & Proteins: TSH, HCG, T4, Ferritin,

Nucleic acid
 DNA fragments

Drugs & small molecules: Digoxin, DNP

Organisms: E.coli (principal model organism)

Y.pestis, L.innocua, B.anthracis,

AMBRI)

Cryptosporidium, Giardia

• Electrolytes: potassium, sodium, chloride

Antibodies: anti-TSST

Can detect/identify/classify
any agent to which a suitable ligand can be found

15/03/01 11:41

Confidential

Summary

Applications of Envisioned Deliverable

Any immunoassay with a sensitive response in minutes
 Continuous monitoring of an environment
 Rapid screening of a population exposed to an infectious agent

What are the unique capabilities of the AMBRI sensor

- Rapid, sensitive assay within minutes
- Small, compact, cheap and robust
- electrical format reduces matrix attenuation of signal

What are the challenges to overcome

- Rapid development of high affinity (high on rate) antibodies
- In line bacterial disruption

